

How Can Machine Learning Be Used

To Increase Player Understanding

Walker, J.

SID:1503648

MOD002791 Final Project

Final Project Report

BSc (Hons) Computer Gaming Technology

Submitted: April 2018

Abstract

This document will outline the process behind designing an artificial intelligence

system that is able to advise players of the game chess, in an attempt to increase their

skill levels. This report will cover theories used in the field of AI, heavily focusing on

Bayesian statistics and game solving AI. Along with game tree theory and game tree

search methods such as the Monte Carlo search method. Brief research into teaching

regarding feedback, and skill ranking systems. A design methodology will be given to

show how this AI would be implemented using UML diagrams, and discussion

regarding the viability of its development within the videogame industry, the effects it

can have, and the wider applications of a teaching AI.

1

Table of Contents

Abstract…………………………………………………………………………….... 1

Table of Contents…………………………………………………………………..... 2

List of Figures……………………………………………………………………...... 4

List of Tables………………………………………………………………………… 5

1.0 Introduction……………………………………………………………………… 6

1.1 Aims of the study……………………………………………………………….. 6

1.1 What is an AI……………………………………………………………………. 6

1.2 What is Machine Learning ……………………………………………………… 7

2.0 Literature Review………………………………………………………………....8

2.1 Bayes’ Theorem…………………………………………………………………..8

2.2 Game Tree Theory……………………………………………………………….. 9

2.3 Monte Carlo Tree Search………………………….……………………………..11

2.4 Video Game AI Scaling ………………………………………………………. 13

2.5 Delivering Useful Feedback…………………………………………………... 14

2.6 Elo Rating System, Calculating Player Skill………………………………….... 16

3.0 Methodology ……………………………………………………………………18

3.1 Choosing a Language……………………………………………………………18

3.2 Designing a Chess Game ………………………………………………………. 18

3.3 Designing Game Trees ………………………………………………………….19

3.4 Implementing Datasets ………………………………………………………… 22

3.6 Simulating ………….. ………………………………………………………… 23

3.7 Mimicking Human Play…………………………………………………………25

3.8 Feedback Generation.. …………………………………………………………. 26

3.9 Final UML…………….……………………………………………………….. 27

2

4.0 Implementation and Results …………………………………………………….28

4.1 Expected Results for the Player………………………………………………… 28

4.2 Issues with Implementation……………………………………………………. 28

5.0 Discussion……………………………………………………………………….29

5.1 Wider Applications……………………………………………………..………. 29

5.2 Limitations of the Design……………………………………………………… 31

5.3 Learning AI as a Mechanic……..……………………………………………… 31

6.0 Conclusion……….…………………………………………………………….. 33

6.1 Overview……….………………………………………………………………..33

6.2 Personal Limitations……………………………………………………………. 34

6.3 Further Study…………………………………………………………………… 35

6.4 Closing Statements…………………………………………………………… 35

References…………………………………………………………………………. 37

Appendix I: Poster………..………………………………………………………… 40

Appendix II: Ethical Research Certification…………………………………………41

3

List of Figures

Figure 1: UML for a Basic Chess Game……………………………………………....18

Figure 2: UML for a Game Tree……….………….…………………………………..,21

Figure 3: UML for Dataset implementation……….…………………………………..22

Figure 4: UML for Calculating Player Skill……….…………………………………..24

Figure 5: UML for Feedback generation….……….…………………………………..26

Figure 6: Final UML diagram………….….……….…………………………………..27

4

List of Tables

Table 1: Proposed Chess Piece Value…………………………………………….12

5

1.0 Introduction

1.1 Aims of the study

In this report I will be researching current methods of machine learning, focusing on

self learning. This document will outline the process of building on these methods and

designing a process to transfer relevant knowledge to the player. This will be done by

assessing the players current skill level, and providing information based on this. The

main goal will be to outline a design and implementation methodology to this end. The

expected outcome of this, when implemented successfully, will be an overall increase in

player skill. I also expect that this form of system will be unable to wholly replace a

trained or experienced teacher, but could be used as a teaching supplement.

1.2 What is an AI

Tecyci states that “Artificial Intelligence (AI) ​is the Science and Engineering domain

concerned with the theory and practice of developing systems that exhibit the

characteristics we associate with intelligence in human behavior, such as perception,

natural language processing, problem solving and planning, learning and adaptation,

and acting on the environment.” (Tecuci 2012). In short an AI is a program that mimics

the behaviour of a human being. It is important to define this as there are many

misconceptions regarding AI, sci fi often portrays AIs as sapient entities or high

functioning versatile computer programs. This is often not the case. It is shown in

Video game AI, while not inherently intelligent, often they will mimic Human

Intelligence and reactions. This fits Tecyci’s definition of an AI.

6

1.3 What is Machine Learning

Murphy defines machine learning as “a set of methods that can automatically detect

patterns in data, and then use the uncovered patterns to predict future data, or to perform

other kinds of decision making under uncertainty (such as planing how to collect more

data)” (​Murphy, K.P. 2012​). Essentially it is a program that analyses data to predict

future outcomes (data), Murphy goes on to discuss the three main types of machine

learning: predictive (or supervised), descriptive (or unsupervised) and reinforcement

learning. Supervised learning is where the correct outputs are known ahead of time,

unsupervised learning is the opposite (​Kotsiantis, S.B 2007​). However the type of

learning this project will be mainly focusing on is machine learning, this is where the

information needed to assess the program’s effectiveness is given by an external trainer.

For example in a game of chess the program would be able to analyse every move that

lead to an outcome (win or lose), and determine which moves where good moves in that

situation.

7

2.0 Literature Review

2.1 Bayes’ Theorem

Bayes’ theorem is a probability equation that takes into account previous known

information to reduce uncertainty. For example if there are 200 crates from shipment A

and 200 crates from shipment B, the base probability for choosing a crate from

shipment A would be 0.5. However if we then declare that 100 crates from shipment A

are damaged while only 40 from B are damaged, if we pick out a damaged crate we can

show there is a higher chance of that crate being from shipment A.

The Equation is thus

(A|B) P = P (B|A)P (A)
P (A)P (B|A) + P (not A)P (B|not A)

Where P is the probability of the event. With A and B being the events.

That is to say the probability of A (Crates being from A) given B (They are broken) is

equal to the probability of a crate from A being broken (0.5) times the probability of a

crate being from A (0.5). Divided by the probability of A given B times the probability

of A, plus times the probability of it not being from A times the probability of it not

from A given B.

We can now show that the chance of the broken crate being from shipment A is

= 0.714 or 71%(SA|B) P = (0.5)(0.5)
(0.5)(0.5) + (0.5)(0.2) = 0.35

0.25

8

In this case if the crate was not from shipment A, then it had to be from shipment B so

the probability of it coming from shipment B 29%.

This is a very simplified version of Bayes’ theorem however it is the basis for many

algorithms used in computing and statistics. Although Bayesian statistics have been

subject to some controversy and is generally considered not viable by older generations

of statisions, it makes sense to use it here.

This theory is very effective at increasing the certainty of any probabilities

calculated, and is particularly effective when you have a large amount of data about

characteristics of the causes of events. In the context of this report the opposing chess

AI can use this method during the tree search in combination with a dataset of chess

moves in order to determine the human players most probable move. The AI element

assisting the player can also use this in conjunction with the all the information gathered

about the player to find their most probable move, and asses the outcome to determine it

is viable. It can then inform the player of it’s findings about this move and if there is a

better alternative. However this would require a large amount of data from games that

the player has played. In this instance we would use the probability of choosing any

certain move, and the probability of choosing a certain move given the players previous

choices.

2.2 Game Tree Theory

In this section we will be researching methods of AI interaction with the game chess.

For this I will be referring to methods of displaying data and sorting the data, these

methods will be assuming that it is a two player zero sum game (A game where one

player must win, and the other lose).

9

An important part of this is Game Tree theory. This is where all the possible

outcomes (moves) displayed in a tree like structure, each branch (or node) being a

game state with end nodes being leafs (​Koller, D. 1994​). As the tree goes on it gets

wider but the number of options per node is reduced. There are two types of algorithms

for searching a game tree, the first being breadth first: where the each move is

considered against moves of the same step as each other. The second: depth first,

where the moves are analysed down the branch taking into account all future moves

on that path. Although depth first algorithms might be more effective, they are less

efficient because they have to see each move through to its ultimate conclusion. A

depth first approach is also seen to be a detriment to the quality of the decision (​Nau,

D.S., 1983​). While this approach may be necessary against high level players, or

against other AI, against the mass majority of players its effectiveness will be

indistinguishable from a breadth first approach.

Another approach to representing this data is in the form of a matrix, where

each players strategies are labeled on the axis and the success rates (payoff) of the

players strategies against the other players are shown inside the matrix. The success

rates are relative to player player 1, so if player 2’s payoff is larger it will be

represented by a negative number (​Barron, E.N., 2013.​). This method is however limited

to one decision regarding strategy, and will not be able to change situationally.

In order to rank these moves / nodes a numerical value must be assigned to

each move. Many problem solving AIs use a technique called minimax, this is a rule

that ensures the minimal maximum loss. Meaning that if there is a loss it should be the

lowest amount of loss possible. Meaning in chess every move is analysed with the goal

10

of prolonging the game while increasing the chance of checkmating your opponent.

IBM's Deep Blue chess computer used this method of tree search. One main issue

with a minimax approach is that in complex games (such as Chess or Go) it uses a lot

of resources to search ahead, as it has to analyse every move possible from that point

in the game. A solution to this is to use a Monte Carlo method, that focuses resources

on the most viable or interesting states (​Silver, D., 2016​).

2.3 Monte Carlo Tree Search

The Monte Carlo method is a loop of 4 states: selection, expansion, simulation and

update. Firstly it selects a starting node, then it randomly decides and simulates moves

for both itself and the player until the game arrives at a conclusion. If it results in a win,

the originally selected node will be increased by a value of 1, otherwise it will result in

an increase of 0. It repeats this for every currently available move available at this step,

then selects one of the paths with the highest value and the highest number of

simulations (ensuring the highest level of accuracy). This is then repeated for the

children of this step up until a certain depth updating the values for that path. This can

be repeated multiple times at each game state to increase effectiveness. After it does

the same with other nodes of the same step. Over time the expansion step will become

more weighted towards selecting nodes that haven’t been simulated. A way to increase

the efficiency of this process further is to examine the goals and constraints of the

game, and eliminate potentially unfit selections based on that.

For the example of chess we can focus on the checkmate state, any series of

moves that results in a checkmate would receive a 1 for that branch. We could also

focus on the value of pieces lost against the value of pieces taken out. To do this we

would need to assign a value to each piece, this could be based on the number of said

11

pieces that are available to the player. Making Pawns the lowest value and the King

the highest value. However there many pieces where the same number of pieces are

available, to solve this we could then rank pieces with higher mobility at a higher cost

(Disregarding the king). This is because they are more versatile and out maneuvering

your opponent is key to achieving the checkmate state, and as any piece is able to

take another mobility is the most important factor.

Below is a table showing the proposed values:

Piece Value

Pawn 0.0125

Knight 0.1

Bishop 0.2

Rook 0.3

Queen 0.8

King 1

For example if you were to lose a pawn, but take a queen, the overall gain of that

branch is 0.7875. This would more accurately assess a branch’s viability. However this

approach may be too logical, part of winning a game is predicting what the enemy is

going to do. If you are too predictable and your opponent has a high enough

understanding of the game they will win no matter what you do. As a result if the AI is

too logical the human player may be able to trick the AI into performing a certain set of

12

actions, which would lead to the human players victory. This would mean that the

player would ultimately not learn any useful information about how to defeat another

human being in chess, but only become very good at tricking the AI.

2.4 Video Game AI Scaling

While many video games have difficulty settings not many actually tailor the difficulty

to the player’s skill level. Usually difficulty settings are determined by the player

themselves which can lead to them under or overestimate their skill level leading them

to be too challenged or not challenged at all. Furthermore at higher skill levels the

player will not feel challenged at all, even with the AI difficulty set to the highest

setting. One game that does set AI difficulty to match the player’s skill is the RTS Star

Craft 2, This forces players to beat the easiest of AI before advancing to the more

difficult tiers. By winning the player is put up a tier and by losing the player is put

down a tier, this ensures that the player is always challenged by their AI opponent. This

however does not solve the problem of higher skill players finding the hardest tier trival

to beat. One recent development in computer game AI in a competitive setting is Open

AI’s Dota 2 bot (​Open AI Blog, 2017​). This bot was initially able to defeat professional

Dota 2 players, it was created using a self-play system. Where the AI played against

itself thousands of times, improving each time with little to no human input. The bot

can even implement certain psychological effects into its strategy, such as baiting,

where the aim is to goad the player into performing an action to gain an advantage. A

similar method could be used to make an AI that can estimate the player’s skill level

and set itself accordingly, to ensure that the player is always challenged. This could also

be taken a step further and attempt to teach the player some of the techniques that it has

learned.

13

2.5 Delivering Useful Feedback

The information gathered by the AI will not be effective if it is meaningless to the

player, therefore emphasis on how this information is displayed is necessary. Firstly it

is important that the information be delivered to the player at the correct time.

“Mowbray (​Mowbray 1953​) provided evidence that, when eye and ear are given

complex stimuli at the same time, one or other may give rise to response, but not

both.”(​Broadbent D. E. 1956​). Multiple complex stimuli such as assessing an

opponent's move in chess, whilst being told complex instructions and reasoning for

your next turn. This would mean that the player would filter out one of the sources,

leading to a weak or no association between the event and the advice given. Deutch

suggests that this “filter” is dependent on the listeners arousal towards the stimuli

(​Deutch 1963​). He further shows that words such as the name of the listener rank higher

than other words, and will cause the lister to change focus. However this only changes

the focus and does not give the listener the ability to interpret both, meaning it is

required that the teaching be done after the initial stimuli not during. As a result the

most optimum implementation would require a timeout period in between moves before

the player is allowed to act, although this will restrict gameplay flow which will make

the game less engaging overall. Which is important as no task can be mastered with one

attempt (​Ebbinghaus 2013​), the player should enjoy using the application to increase

the chance of them returning to it.

An alternative to this would be to show a recap at the end of a game / match,

detailing each individual move that was made and what the best response to that move

would have been. This may not be the perfect solution as this will be a lot of

14

information for the player to process in a short period of time. Miller shows that there is

an absolute limit on the amount of information that human beings can discriminate

within a period of time (​Miller 1956​), any additional information would lead to

confusion and would mean that the AI has failed. A potential solution to this problem is

to only focus on common mistakes until these mistakes are no longer present (or

common). This however will require a large enough samples of data from each of the

skill groups before the AI will be able to accurately discern the most common mistakes

for each of the groups.

Given the ability to predict a players next move (through Bayesian statistics) a

solution might be to pre-warn the player of any impending mistakes that they are

probable to make, only notifying the player when they are likely to make a mistake.

This would increase the signal to noise ratio, reducing on any unnecessary feedback

during the game and therefore reducing the possibility of confusion occuring.

As the AI will primarily targeting experiential learners (due to the nature of the

player acting in the game’s environment) we can use Kolb and Fry’s experiential

learning model (​Fry, R. and Kolb, D. 1979​). Although the learning model is cyclical it

makes most sense to start from the Concrete experience phase, this is where the student

initially attempts the task. It’s highly likely that they will fail at this stage, and in fact it

is better if they do, the important part is that they have some information as to how they

have failed for the next section of the model. After the initial task the student is given

time / resources to focus on observations and reflections (Observations and reflections

phase). Then conceptualise ideas into theories (Abstract Concepts and Generalisation

15

phase). Finally they then use these theories to solve problems with their performance

(Implications of Concepts in New Situations phase) and starting the task again

generating a new set of results. To apply this to chess would be this: firstly the player

plays a game of chess against an opponent, they lose or win, reflect on the weaknesses

in their strategy, think of how to overcome these weaknesses, implement them into their

new strategy and play against another opponent. It is now clear that the most opportune

moment for the AI to offer advice is after the player has had a chance to review the

match during their conceptualisation of theories. However it would aid the players

memory of events if the AI could provide an easily viewable and understandable recap

of the players moves to aid in the observation phase of the cycle. How the player would

implement this would be their own responsibility as if the AI plainly states this, the

player would not learn anything.

2.6 Elo rating system, Calculating player skill

In order to provide useful advice and to tailor the AI to the players current skill, firstly

their skill needs to be measured. This is commonly done in most zero sum games using

the Elo rating system. The Elo system was created by Arpad Elo, and designed for

rating chess players. It is a system where a numerical representation of the players skill

is assigned an amount is deducted or added to this number on a win or a loss, this

amount is decided based on the difference in the players skill (​Elo, A.E., 1978​). The

equation is this:

 R K (S E) R′ = + −

Where R’ is the new rating, R is the old rating K is the maximum increase or decrease

of rating (for chess this is 32 unless they are the rank of master (2000+) which in which

16

K is 16), S the actual outcome and E the expected outcome the expected outcome of a

player is calculated as so:

 E A = 1

1 + 10 (R − R) / 400B A

Where E is the expected outcome of player. A and B being the two players, and R the

rating of the player. The equation for player B would look like this

 E B = 1

1 + 10 (R − R) / 400A B

This is used as it provided diminishing results for beating players of a lower skill

meaning a player cannot reach higher ratings by just beating low skill opponents.

For example if player A’s Elo rating is 1500 and player B’s rating is 1000 the expected

outcome for player A would be this:

 = = = 0.94 E = 1
1 + 10 (1000 − 1500) / 400

1
1 + 10 −1.25

1
1.056

meaning if player 1 won their Elo rating would be

 1500 32 (1 0.94) 1500 1.92 501.92 1502 R′ = + − = + = 1 =

If player 1 lost their Elo rating would be

 1500 32 (0 0.91) 1500 9.12 470.88 1471 R′ = + − = + − 2 = 1 =

Elo rating generally starts at 1000 and new players are often given a higher K value so

they can rise or fall through the rankings during there provisional games more quickly,

and their opponents will often lose less Elo as it is highly likely they will not be at an

accurate rank. during these games.

17

3.0 Methodology

3.1 Choosing a language

The language chosen for this project is C++ this is because a lot of flexibility is

provided by the use of pointers and allowing for explicit memory allocation, along with

this C++ is more efficient which is important seeing as large amounts of data needs to

be processed.

3.2 Designing a simple Chess game

As the main focus of the report is not the design and implementation of the chess game

itself, the design has been oversimplified. Although all the necessary elements are there.

There is a board, which contains a list of spaces and methods to set up and display the

board. Each space has a position and a pointer to a piece that occupies that space.

Finally we have the main game loop where most of the logic for the game will take

place.

Fig. 1 UML for basic chess game

18

Each piece will have a move type variable that will contain the direction that that piece

can move in.

3.3 Designing Game Trees

The core part of the AI will be the concept of Game Tree Theory. To implement this a

form of nested list will be used. In C++ there is no type list as there is in C# which

means that an object must be created to store multiple objects. However if C# was used

it is likely that a new list class would have to be created to mimic the tree like structure.

Firstly individual nodes need to be created (Listed as TreeNode on the UML diagram).

Nodes should contain pointers to the nodes to the left, right, above and below

(all children), this is so the program knows which node to go to next when iterating

through the list. Although it is not necessary for the Monte Carlo method as a child

node will be selected from the parent node without checking against other nodes, if at

anypoint another search algorithm is used the ability to compare nodes of the same

hierarchy would be useful. Nodes will also need a string to represent the move taken

these will be stored in Standard Chess Notation (SCN), If a bishop has moved from d4

to e5 it will be noted as Be5 the B representing the piece (Pawns movement uses no

prefix). This is important as the dataset that will be used will be in this standard

notation. Each node will also contain how many times that particular node has been

simulated (used for monte carlo search as previously discussed). Each of these variables

will have a public accessor used for comparing them.

19

A GameBranch functions similarly to nodes in the respect that it has pointers to

the previous and next GameBranch but they also contain pointers to the first and last

Nodes within that branch, it also has a pointer to the current node (used for iterating

through nodes). Each branch will also have an integer variable used to store the total

cost of that branch, along with a bool variable to store whether or not that branch is

viable. A Branch will have public accessors to both the next and previous along with

two other public methods. The 1st being PopulateList, which will add each of the

possible moves from the start of the branch until the that branch’s conclusion. The 2nd

a method called EvaluateBranch which will be responsible for totaling the cost of the

branch and, if at the end it becomes less viable than a previous branch, change the

viable bool accordingly. This method will be given this lowest cost variable from the

GameTree class.

The game tree class will also have start, end and current variables except they

will be pointers to GameBranchs rather than TreeNodes. It will also contain the

lowestCost integer and a pointer to the GameBranch associated with this. This class

also contains a PopulateList method that will be responsible for generating each

GameBranch and having it run it’s own PopulateList method. Finally there is a search

method that will iterate through each branch’s EvaluateBranch method and update the

lowest cost variable if needed. These methods will be called from within Main() inside

the main game loop when it is the AI’s turn.

20

Fig. 2 UML for a Game Tree

21

3.4 Implementing Datasets

In order to simulate the players moves we first need to implement a class to handle the

loading of a dataset so it can be analysed. Given enough time the AI could generate it’s

own, however at this point it would be simpler to use a given set. This will have a more

varied set of moves as the data will not all be from the same player. The dataset

provided with this document (​Kaggle 2017​) contains the information required to predict

the players move, data such as: winner, moves taken (in SCN), player skill rating and

opening strategies.

Fig. 3 UML for Dataset implementation

These classes are set up in a similar way to the GameBranch and GameNode classes.

The node in this instance is the Game class, this class contains all the information for

the AI to make an informed decision when it comes to predicting the players next move.

It has variables for the previously mentioned data, along with public accessors to each.

22

The list of games class is different from the lists designed before as it has two variables

for the start and end of a list, this is because 2 lists are needed. One for all the games in

the dataset, and the other is for games that are specific to the current state of the game.

This class also contains a char array that will store the most likely move the player will

make.

List of games has a populate list method that is similar to the other lists in the

project other than it will be loading data from a Comma Separated Values (CSV) file

using the fstream library. After the variables are loaded from the CSV file a new Game

object will be created using it’s constructor and inserted into the list, this list will only

be populated when a ListOfGames object is created. Once the list is populated the

Search method can be used, this method takes a char array of all the moves up until this

point and populates a list of Games that matches these moves. Although the dataset

provided is quite large, there are around 72,000 possible combinations after 2 moves, so

this will need to search for similar configurations not exact matches. Once a set of

probable moves are selected, the evaluate method will be run. The Evaluate method

implements bayesian statistics researched earlier.

3.5 Simulating

Once the data is loaded the move can be predicted, this can be done by implementing

bayes theorem. First select a viable move which the player is in the position to make,

then we take the base probability of that move (based on the amount that move is made

23

out the total moves that can be made). Then take the probability of the player taking that

move based on their skill rating, when put into the formular it will look like this:

(A|B) P = P (move given skill)P (move)
P (move)P (move given skill) + P (other move)P (other move given skill)

This calculation will take place in the Evaluate method inside the ListOfGames class,

each potential move will undergo this process if the move has a higher chance than the

current viableMove variable this move will replace it. Once each move has been

evaluated the viable move is used to update the game state for the next move.

3.6 Calculating player skill

Fig. 4 UML for Calculating Player Skill

To determine the level at which the AI will play at and what advice will be given, a

player skill rating is required. This is shown as an Elo ranking, to attain a rank the

player must undertake a set of 20 placement games. During these placement games the

AI will be required to increment in difficulty in order to accurately place the player. To

calculate and store this value the Player class is created. This class will contain

variables for the players current skill rating (Starts at 1000) and how many games the

player has completed. Along with this the class will contain 3 methods and a

constructor. The first method will be responsible for adjusting the players Elo rating,

this will take 2 int variables the opponents Elo rating and the outcome of the match (0 if

a loss, 1 if a win). This method will use the calculations discussed in chapter 1.9 to

24

calculate the players new Elo rating. The next method will be used to save the players

data externally so it can be loaded on different executions of the program, this number

will be stored along with other information about the player this could include game

data (e.g. moves made, outcome, skill level of the game). When this information is

being loaded it would be based on the most recent game data. Finally there is a public

accessor for the players Elo ranking that will be used by the AI to tailor it’s play level.

Adjusting the AIs Elo rating simply changes the range of moves that it will consider

based on moves from the dataset.

3.7 Mimicking Human Play

Now that the players skill has been decided the AI can now tailor it’s moves to that skill

level, ideally the AI would play at a slightly higher skill so the player learns more from

the experience. Where previously the AI would search for the best move and then

perform it, it will now search for the most used move by human players in that

situation. The methods that would search for the best move will now be given to the

player as feedback on moves that they have made.

This method would work in a similar way to the prediction stage of simulation

where the AI will take the most probable move of a player of that skill given the

player’s predicted next move. This should help the player more in actual player vs

player situations as the AI would be essentially copying the most used move in that

situation. For masters and above ranked opponents it could be more beneficial to allow

the AI to find the best move as it could provide a better learning experience.

25

Functionally the core methods will not change, the ListOfGames methods will

be ran twice the 1st being the players move (Predictive) the 2nd being the AI’s next

move. The GameTree’s viable move will be passed to the player via feedback instead

informing the AI’s next move.

3.8 Feedback Generation

Generating feedback for the player is a relatively simple task, to do this all moves of the

game should be recorded along with all the best possible moves. At the end of a game

these sets of moves will then be displayed after a game. This will be done by adding

two new char array variables to the GameLoop class to store these sets, and adding

method that will display them. Seeing as the aim is to create a console application these

will be output to the console, however a more intuitive GUI could be employed

showing a step by step of moves all the moves they made and which moves would have

been better. The challenge comes from generating feedback that is accessible to new

players but expert players will still find useful.

Fig. 5 UML for Feedback Generation

26

3.9 Final UML

Fig. 6 Final UML

27

4.0 Implementation and Results

4.1 Expected Results for the Player

What I would expect to see from exposing people to this type of AI is a slight increase

in overall skill (Elo rating) in players that use the application, compared to those who

do not. However it is expected that completely new players would not benefit from

these types of applications because there is too much terminology and too many rules

that they would have to know before they can start improving upon their skills. A basic

understanding of the game would be required before the player would be able to

understand why one move is better than another. Furthermore it is not expected that

there will be a large change in skill (as opposed to playing the game without assistance)

this is because players will get used to being told how to improve, and when they are

not able to be explicitly told they will find it difficult to understand their shortcomings.

4.2 Issues with implementation

The goal at the start of this project was to design and implement a learning AI that

could offer chess players insight into their mistake, although the aim was to research the

topic in a more general sense and only to use chess as an example. Unfortunately due to

personal oversight in aspects of the project, it was unable to be implemented. This was a

result of a multitude of issues, chiefly among which was a lack of current academic

experience. As a result only a design methodology was produced. This will be further

explained within the Conclusion of the project.

28

5.0 Discussion

5.1 Wider Applications

It is apparent based on the literature review chapter that the application of statistics and

probability in AI is very prevalent especially Bayesian statistics. Due to the nature of

this this approach to AI, and it’s ability to reduce uncertainty, has much wider

applications. Any task that has a fail state and a win state can utilise this method, it

doesn’t necessarily have to be zero sum but so long as there are clear success and

failure conditions this method is applicable. Meaning it can be utilized to teach subjects

other than games. The core concept simply compares the user input with a objective AI

generated input and outputs the difference between the two. While there are services

that already offer the same end result, having the program inform a student whether or

not an answer is correct These programs are explicitly given the answer to a proposed

question, Whereas the design of this program would allow it to determine the most

efficient answer without having to be told.

The concept of skill rankings applies to anything that isn’t a subjective subject

(such as art), and Elo is widely used in video games or at least heavily inspires ranking

systems. Theoretically you could rank students based on scores or the time taken to

perform a task and compare them to each other individually, and calculate an Elo rating

based on their performance out of that set of students. This could then be used to

determine who should attend higher classes and who should attend the lower classes.

This however would not work with subjects such as art for two reasons, firstly there is

29

not a divide in art classes based on skill. Secondly the measure of success of a piece of

art is subjective and has no right or wrong answer (No win / loss state). While it may

not be necessarily be a good idea to introduce a system that grades students based on

eachothers merritts, there are similar systems in place for students and in most cases

schools are ranked against each other.

This kind of AI could be used in the games industry, which recently has been

favouring competitive elements. This has caused an influx of high skill cap mechanics

in games, which causes a barrier to entry. This result is one that game developers strive

to reduce, as their goal is to make their game as accessible or enjoyable as it can be (in

most cases). The implementation of a teaching AI inside the game itself would help

players, that are disinterested due to this barrier to entry, to quickly come to grasps with

the core mechanics and get to a level of skill where they can enjoy the game. This

would also interest players of any skill, as due to the competitive nature of these games

there is a constant want to improve from the player’s perspective. There are actually

already available coaching services where another person listens in and watches people

play video games and tells them how they can improve. This is as a result of the recent

popularisation of esports (Electronic sports), and whole careers that have been made off

of this trend. I game I previously mentioned in this report (Dota 2) has recently added a

paid analytics service (Dota Plus) that offers the player insight into the game. It will

give them suggestions based on the current match they are playing, for example which

Hero (Character) to pick in order to counter an enemy Hero or lineup and even which

skills to level based on that. It also gives the player post game analytics and trends.

30

There is currently no data available for how many subscribers there are to this service,

however the fact that it exists alone shows there is a demand for it.

5.2 Limitations of the Design

A limitation of this design is that although the AI can arrive at it’s own conclusions it

still requires programming with specialist knowledge in mind. using this design as an

example, if the aim was to create a chess AI it would have to be designed with the rules

of chess in mind. It is very inflexible and you cannot simply transfer it to any game and

have it learn it from scratch. This could be rectified by implementing natural language

processing, like IBM’s Doctor Watson. Doctor Watson is a teaching assistant (question

answering AI) that was originally created to solve the game Jeopardy (Based on the TV

show) but has since gone on to be used as a chatterbot to converse about childrens toys.

This AI is able to interpret language and produce an output but cannot comprehend the

semantics. Implementing this methodology would allow the AI to interpret rules, but

would not be able to understand the meaning behind them. They would just be viewed

as lines and symbols.

5.3 Learning AI as a Mechanic

Previously discussed was the AI's potential for a competitive gaming environment,

however learning AI is already used as a mechanic in games. In games such as Hello

Neighbour, a game where you have to break into your neighbour’s house in order to

gain knowledge of their sinister deeds. The neighbour (AI element) in question will

learn things about the way you play the game, in an attempt to stop the player from

achieving their goal. For instance if you (the player) constantly enter the house through

a window, a trap would be placed neer that window. The difficulty is increased each

31

time the player is caught by the neighbour. This is used to give the impression of an

intelligent opponent and to make the game more interesting, and increasing difficult, the

more times you play it.

This style of mechanic could be interesting when implemented into strategy

games. Take the game sid meier's civilization, in the game a player controls a nation's

leader with the ultimate goal of one of the many win conditions, being no other players

remaining, technological advancement, culture and diplomacy. The game features AI

advisors which inform the players on what they should build or research. Implementing

a teaching AI into this mechanic would lead to situational results based on how the

player wants to interact with the game. This would mimic the effects of a real human

advisor, and could even assume different personalities that give different styles of

advice making them seem more human. Variants of this mechanic could be

implemented into other genres, for example this level of adaptable gameplay would

lend itself to the horror genre to keep players on edge.

32

6.0 Conclusion

6.1 Overview

The aim of this project was to increase player understanding via the use of an AI

element. Although I had managed to research elements of AI development and designed

an AI to this end, ultimately I was unable to implement this into a working AI. As a

result I was unable to generate a set of data to prove that it is viable, or that it isn’t

viable. However it is possible to look at current AI that attempt to perform this task, the

previously mentioned teaching aid Dr Watson (Enlight / Element) has programs to aid

in early and later stages of education by targeting the students strengths and

weaknesses. Although IBM’s AI is much more complex than the one I have detailed in

this document, the core principle is the same: understand the mistakes that a student

could make, and offer this information as feedback. We can see by the continued

investment into these technologies from IBM, that this style of system is viable in

education and by extension in chess tutoring.

Overall the design of the program outlined is somewhat oversimplified, It

portrays a broad interpretation of how such a system could be implemented and how to

apply data to actions made. However there is a lot of parsing of data which could cause

performance issues, fixes to which have not been mentioned in the methodology. In fact

there is very little in the way of optimisation mentioned during the mentioned section.

The design currently imports a dataset rather than parsing the information in a file, this

means that more data is having to be stored at runtime. While the dataset mentioned is

33

relatively small (In terms of datasets) having all of it loaded into memory is inefficient.

Furthermore the handling of storing new data isn’t gone into in detail. However the

design is unable to go into great detail due to an inability to foresee potential issues that

would arise through the process of attempting to implement it in code. As in any

projects, a high level of planning does not always ensure a guaranteed success and there

are often unexpected errors or bugs.

6.2 Personal Limitations

A lot of issues I would have in implementing this design effectively is due to my

current academic level, and lack of specialist knowledge required to produce an AI in

the field of teaching. For instance Chess is a complex game with many nuanced rules

such as castling, where in certain situations the king and rook can essentially switch

places with each other. Small rules like this require a working knowledge of the game

to implement, along with testing the AI. In order to test if the AI was giving the user the

best move, knowledge of what the best move should be in some situations is required.

Along with this is the lack of knowledge in the subject area of teaching meant that even

if I could develop this AI it would most likely be inefficient when it comes to actually

teaching players the game. Seeing as there are qualifications required before anyone can

start teaching, any attempt I would make would not meet these standards. Finally the

standard of programming experience required for this project is higher than my own,

the time it would take to implement I would have most likely gone past the deadline

that was set. This project is more suited to a Computer Scientist or an AI focused

student.

34

6.3 Further Study

In order to properly implement this design along with the proposed addition of

Language processing and adaptability would take further study in this field, if it were to

be taken forward to a higher level it could be successful. And data could be gathered to

determine if having an AI to assist you in tasks will increase the long term skill of a

user or if it will just show a temporary increase. Taking this further would entail adding

this system to other games in an attempt to make a more versatile AI and to gather more

data on different subjects. It would also be beneficial, if the project was taken far

enough, to attempt to implement this system in a learning environment to understand

how students interact with it in comparison to the regular curriculum. The main issue

with further development of this is that some specialist knowledge in each of the subject

areas expanded into would be required. Consultants would be needed to implement and

test each field of study to ensure they are correct, and relevant information is given at

the right time.

6.3 Closing Statements

To conclude the research and design element of the project went as planned, although

the implementation and results sections didn’t. The design as a whole was a success but

the aims of the study were not met, and no data was received to prove that the AI would

be effective. Further study would be required to fully finish this project, however the

project would likely benefit from other researchers of different backgrounds. Although

it could be beneficial to the field of game development, it is most likely better

researched and used by computer scientists and in some cases psychologists. Focused

35

more towards academic pursuits, rather than video game implementation. The question

is: will this AI be more, less or the same level of use to a user than a set of static

instructions? an answer impossible to know without statistics from tests.

36

References

Barron, E.N., 2013. Game theory an introduction 2nd ed., Hoboken, N.J.: John Wiley &

Sons, Inc.

Broadbent, D.E., 1956. Successive responses to simultaneous stimuli. Quarterly

Journal of Experimental Psychology, 8(4), pp.145-152.

Deutsch, J & Deutsch, D, 1963. Attention: Some Theoretical Considerations.

Psychological Review, 70(1), pp.80–90.

Ebbinghaus, H., 2013. Memory: A contribution to experimental psychology. Annals of

neurosciences, 20(4), p.155.

Elnaggar, A.A., Abdel, M., Gadallah, M. and El-Deeb, H., 2014. A comparative study of

game tree searching methods. Int. J. Adv. Comput. Sci. Appl., 5(5), pp.68-77.

Elo, A.E., 1978. The rating of chessplayers, past and present. Arco Pub..

Fry, R. and Kolb, D., 1979. Experiential learning theory and learning experiences in

liberal arts education. New directions for experiential learning, 6, p.79.

Mitchel. J, 2017. Chess Game Dataset (Lichless) | Kaggle [online] Available Through:

https://www.kaggle.com/datasnaek/chess

37

https://www.kaggle.com/datasnaek/chess

[Accessed 17/04/2018]

Koller, D., Megiddo, N. and Von Stengel, B., 1994, May. Fast algorithms for finding

randomized strategies in game trees. In Proceedings of the twenty-sixth annual ACM

symposium on Theory of computing (pp. 750-759). ACM.

Kotsiantis, S.B., Zaharakis, I. and Pintelas, P., 2007. Supervised machine learning: A

review of classification techniques.

Miller, George A., 1994. The Magical Number Seven, Plus or Minus Two: Some Limits

on Our Capacity for Processing Information. Psychological Review, 101(2), pp.343–52.

Murphy, K.P., 2012. Machine learning a probabilistic perspective, Cambridge, MA:

MIT Press.

Nau, D.S., 1983. Pathology on game trees revisited, and an alternative to minimaxing.

Artificial intelligence, 21(1-2), pp.221-244.

Open AI Blog, 2017. More on Dota 2. [online] available at:

<​https://blog.openai.com/more-on-dota-2/​>

[Accessed 20/01/2018]

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. and Dieleman, S.,

38

https://blog.openai.com/more-on-dota-2/

2016. Mastering the game of Go with deep neural networks and tree search. nature,

529(7587), pp.484-489.

Tecuci, G., 2012. Artificial intelligence. Wiley Interdisciplinary Reviews:

Computational Statistics, 4(2), pp.168–180.

39

Appendix I: Poster

40

Appendix II: Ethical Research Certification

41

